
Package: ranktreeEnsemble (via r-universe)
September 13, 2024

Type Package

Title Ensemble Models of Rank-Based Trees with Extracted Decision
Rules

Version 0.21

Date 2023-08-03

Maintainer Min Lu <luminwin@gmail.com>

BugReports https://github.com/TransBioInfoLab/ranktreeEnsemble/issues/

License GPL (>= 2)

Depends R (>= 3.5.0)

Imports Rcpp (>= 1.0.10),randomForestSRC,gbm,methods,data.tree

LinkingTo Rcpp

Description Fast computing an ensemble of rank-based trees via
boosting or random forest on binary and multi-class problems.
It converts continuous gene expression profiles into ranked
gene pairs, for which the variable importance indices are
computed and adopted for dimension reduction. Decision rules
can be extracted from trees.

URL https://github.com/TransBioInfoLab/ranktreeEnsemble/

LazyData TRUE

RoxygenNote 7.2.3

NeedsCompilation yes

Date/Publication 2023-08-03 07:48:38 UTC

Repository https://transbioinfolab.r-universe.dev

RemoteUrl https://github.com/transbioinfolab/ranktreeensemble

RemoteRef HEAD

RemoteSha 277784d67bf80e946ce29865a69c9e9cd7f42f39

1

https://github.com/TransBioInfoLab/ranktreeEnsemble/issues/
https://github.com/TransBioInfoLab/ranktreeEnsemble/

2 extract.rules

Contents
extract.rules . 2
importance . 3
pair . 4
predict . 5
ranktreeEnsemble . 7
rboost . 7
rforest . 10
select.rules . 15
tnbc . 16

Index 17

extract.rules Extract Interpretable Decision Rules from a Random Forest Model

Description

Extract rules from a random forest (rfsrc) object

Usage

extract.rules(object, subtrees = 5,
treedepth = 2,
digit = 2,
pairs = TRUE)

Arguments

object A random forest (rfsrc) object

subtrees Number of trees to extract rules

treedepth Tree depth. The larger the number, the longer the extracted rules are.

digit Digit to be displayed in the extracted rules.

pairs Are varibles in (object) generated from the pair function? Set pairs = FALSE
to extract rules from regular random forest (rfsrc) object with continuous pre-
dictors.

Value

rule Interpretable extracted rules. Note that the performance score displayed is inac-
curate based on few samples.

rule.raw Rules directly extracted from trees for prediction purpose

data Data used to grow trees from the argument (object).

importance 3

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
obj <- rforest(subtype~., data = tnbc[1:100,c(1:5,337)])
objr <- extract.rules(obj)
objr$rule[,1:3]

extract rules from a regular random forest
library(randomForestSRC)
obj2 <- rfsrc(subtype~., data = tnbc[1:100,c(1:5,337)])
objr2 <- extract.rules(obj2, pairs = FALSE)
objr2$rule[,1:3]

importance Variable Importance Index for Each Predictor

Description

The function computes variable importance for each predictor from a rank-based random forests
model or boosting model. A higher value indicates a more important predictor. The random forest
implementation was performed via the function vimp directly imported from the randomForest-
SRC package. Use the command package?randomForestSRC for more information. The boosting
implementation was performed via the function relative.influence directly imported from the
gbm package. For technical details, see the vignette: utils::browseVignettes("gbm").

Usage

importance(object, ...)

Arguments

object An object of class rfsrc generated from the function rforest or gbm generated
from the function rboost.

... Further arguments passed to or from other methods.

Value

For the boosting model, a vector of variable importance values is given. For the random forest
model, a matrix of variable importance values is given for the variable importance index for all the
class labels, followed by the index for each class label.

4 pair

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
##
Random Forest
##
obj <- rforest(subtype~., data = tnbc[,c(1:10,337)])
importance(obj)
##
Boosting
##
obj <- rboost(subtype~., data = tnbc[,c(1:10,337)])
importance(obj)

pair Transform Continuous Variables into Ranked Binary Pairs

Description

The function transforms a dataset with p continuous predictors into p∗(p−1)
2 binary predictors of

ranked pairs

Usage

pair(data, yvar.name = NULL)

Arguments

data A dataset with p continuous variables or with p+1 variables including a depen-
dent variable.

yvar.name The column name of the independent variable in data. By default, there is no
dependent variable.

Value

A data frame with the transformed data. The dependent variable is moved to the last column of the
data.

predict 5

Note

The function is efficiently coded in C++.

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
datp <- pair(tnbc[101:105,c(1:5,337)],"subtype")
datp
datp <- pair(tnbc[105:110,1:5])
datp

predict Prediction or Extract Predicted Values for Random Forest, Random
Forest Rule or Boosting Models

Description

Obtain predicted values using a random forest (rfsrc), random forest extracted rule (rules) or
boosting (gbm) object. If no new data is provided, it extracts the out-of-bag predicted values of the
outcome for the training data.

Usage

predict(object,
newdata = NULL,
newdata.pair = FALSE, ...)

Arguments

object An object of class rfsrc generated from the function rforest or gbm generated
from the function rboost.

newdata Test data. If missing, the original training data is used for extracting the out-of-
bag predicted values without running the model again.

newdata.pair Is newdata already converted into binary ranked pairs from the pair function?

... Further arguments passed to or from other methods.

6 predict

Details

For the boosting (gbm) object, the cross-validation predicted values are provided if cv.folds>=2.

Value

value Predicted value of the outcome. For the random forest (rfsrc) object, it is the
predicted probability. For the boosting (gbm) object, it is the fitted values on
the scale of regression function (e.g. log-odds scale). For the random forest
extracted rule (rules) object, it is empty.

label Predicted label of the outcome.

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
##
Random Forest
##
obj <- rforest(subtype~., data = tnbc[1:100,c(1:5,337)])
predict(obj)$label
predict(obj, tnbc[101:110,1:5])$label

datp <- pair(tnbc[101:110,1:5])
predict(obj, datp, newdata.pair = TRUE)$label
##
Random Forest Extracted Rule
##
objr <- extract.rules(obj)
predict(objr)$label[1:5]
predict(obj, tnbc[101:110,1:5])$label

##
Boosting
##
obj <- rboost(subtype~., data = tnbc[1:100,c(1:5,337)])
predict(obj)$label
predict(obj, tnbc[101:110,1:5])$label

ranktreeEnsemble 7

ranktreeEnsemble Ensemble Models of Rank-Based Trees for Single Sample Classifica-
tion with Interpretable Rules

Description

The package ranktreeEnsemble implements an ensemble of rank-based trees in boosting with the
LogitBoost cost and random forests on both binary and multi-class problems. It converts continu-
ous gene expression profiles into ranked gene pairs, for which the variable importance indices are
computed and adopted for dimension reduction. Interpretable rules can be extracted from trees.

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

library(ranktreeEnsemble)
data(tnbc)
########### performance of Random Rank Forest
obj <- rforest(subtype~., data = tnbc[,c(1:10,337)])
obj
variable importance
importance(obj)
########### predict new data from Random Rank Forest
predict(obj, tnbc[101:110,1:10])$label
########### extract decision rules from rank-based trees
objr <- extract.rules(obj)
objr$rule[1:5,]
predict(objr, tnbc[101:110,1:10])$label
########### filter decision rules with higher performance
objrs <- select.rules(objr,tnbc[110:130,c(1:10,337)])
predict(objrs, tnbc[101:110,1:10])$label

rboost Generalized Boosted Modeling via Rank-Based Trees for Single Sam-
ple Classification with Gene Expression Profiles

8 rboost

Description

The function fits generalized boosted models via Rank-Based Trees on both binary and multi-class
problems. It converts continuous gene expression profiles into ranked gene pairs, for which the
variable importance indices are computed and adopted for dimension reduction. The boosting im-
plementation was directly imported from the gbm package. For technical details, see the vignette:
utils::browseVignettes("gbm").

Usage

rboost(
formula,
data,
dimreduce = TRUE,
datrank = TRUE,
distribution = "multinomial",
weights,
ntree = 100,
nodedepth = 3,
nodesize = 5,
shrinkage = 0.05,
bag.fraction = 0.5,
train.fraction = 1,
cv.folds = 5,
keep.data = TRUE,
verbose = TRUE,
class.stratify.cv = TRUE,
n.cores = NULL

)

Arguments

formula Object of class ’formula’ describing the model to fit.

data Data frame containing the y-outcome and x-variables.

dimreduce Dimension reduction via variable importance weighted forests. FALSE means
no dimension reduction; TRUE means reducing 75% variables before binary rank
conversion and then fitting a weighted forest; a numeric value x% between 0 and
1 means reducing x% variables before binary rank conversion and then fitting a
weighted forest.

datrank If using ranked raw data for fitting the dimension reduction model.

distribution Either a character string specifying the name of the distribution to use: if the
response has only 2 unique values, bernoulli is assumed; otherwise, if the
response is a factor, multinomial is assumed.

weights an optional vector of weights to be used in the fitting process. It must be positive
but does not need to be normalized.

ntree Integer specifying the total number of trees to fit. This is equivalent to the num-
ber of iterations and the number of basis functions in the additive expansion,
which matches n.tree in the gbm package.

rboost 9

nodedepth Integer specifying the maximum depth of each tree. A value of 1 implies an
additive model. This matches interaction.depth in the gbm package.

nodesize Integer specifying the minimum number of observations in the terminal nodes
of the trees, which matches n.minobsinnode in the gbm package.. Note that this
is the actual number of observations, not the total weight.

shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as
the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller
learning rate typically requires more trees. Default is 0.05.

bag.fraction the fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit. If
bag.fraction < 1 then running the same model twice will result in similar but
different fits. gbm uses the R random number generator so set.seed can ensure
that the model can be reconstructed. Preferably, the user can save the returned
gbm.object using save. Default is 0.5.

train.fraction The first train.fraction * nrows(data) observations are used to fit the gbm
and the remaining observations are used for computing out-of-sample estimates
of the loss function.

cv.folds Number of cross-validation folds to perform. If cv.folds>1 then gbm, in addi-
tion to the usual fit, will perform cross-validation and calculate an estimate of
generalization error returned in cv.error.

keep.data a logical variable indicating whether to keep the data and an index of the data
stored with the object. Keeping the data and index makes subsequent calls to
gbm.more faster at the cost of storing an extra copy of the dataset.

verbose Logical indicating whether or not to print out progress and performance indica-
tors (TRUE). If this option is left unspecified for gbm.more, then it uses verbose
from object. Default is TRUE.

class.stratify.cv

Logical indicating whether or not the cross-validation should be stratified by
class. The purpose of stratifying the cross-validation is to help avoid situations
in which training sets do not contain all classes.

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores. If n.cores is not specified by the user,
it is guessed using the detectCores function in the parallel package. Note
that the documentation for detectCores makes clear that it is not failsafe and
could return a spurious number of available cores.

Value

fit A vector containing the fitted values on the scale of regression function (e.g.
log-odds scale for bernoulli).

train.error A vector of length equal to the number of fitted trees containing the value of the
loss function for each boosting iteration evaluated on the training data.

valid.error A vector of length equal to the number of fitted trees containing the value of the
loss function for each boosting iteration evaluated on the validation data.

10 rforest

cv.error If cv.folds < 2 this component is NULL. Otherwise, this component is a vector
of length equal to the number of fitted trees containing a cross-validated estimate
of the loss function for each boosting iteration.

oobag.improve A vector of length equal to the number of fitted trees containing an out-of-bag
estimate of the marginal reduction in the expected value of the loss function.
The out-of-bag estimate uses only the training data and is useful for estimating
the optimal number of boosting iterations. See gbm.perf.

cv.fitted If cross-validation was performed, the cross-validation predicted values on the
scale of the linear predictor. That is, the fitted values from the i-th CV-fold, for
the model having been trained on the data in all other folds.

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
obj <- rboost(subtype~., data = tnbc[,c(1:10,337)])
obj

rforest Random Forest via Rank-Based Trees for Single Sample Classification
with Gene Expression Profiles

Description

The function implements the ensembled rank-based trees in random forests on both binary and
multi-class problems. It converts continuous gene expression profiles into ranked gene pairs, for
which the variable importance indices are computed and adopted for dimension reduction. The
random forest implementation was directly imported from the randomForestSRC package. Use
the command package?randomForestSRC for more information.

Usage

rforest(formula, data,
dimreduce = TRUE,
datrank = TRUE,
ntree = 500, mtry = NULL,
nodesize = NULL, nodedepth = NULL,
splitrule = NULL, nsplit = NULL,
importance = c(FALSE, TRUE, "none", "anti", "permute", "random"),

rforest 11

bootstrap = c("by.root", "none"),
membership = FALSE,
na.action = c("na.omit", "na.impute"), nimpute = 1,
perf.type = NULL,
xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL,
forest = TRUE,
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
seed = NULL,
statistics = FALSE,
...)

convenient interface for growing a rank-based tree
rforest.tree(formula, data, dimreduce = FALSE,

ntree = 1, mtry = ncol(data),
bootstrap = "none", ...)

Arguments

formula Object of class ’formula’ describing the model to fit. Interaction terms are not
supported.

data Data frame containing the y-outcome and x-variables.

dimreduce Dimension reduction via variable importance weighted forests. FALSE means
no dimension reduction; TRUE means reducing 75% variables before binary rank
conversion and then fitting a weighted forest; a numeric value x% between 0 and
1 means reducing x% variables before binary rank conversion and then fitting a
weighted forest.

datrank If using ranked raw data for fitting the dimension reduction model.

ntree Number of trees.

mtry Number of variables to possibly split at each node. Default is number of vari-
ables divided by 3 for regression. For all other families (including unsupervised
settings), the square root of number of variables. Values are rounded up.

nodesize Minumum size of terminal node. The defaults are: survival (15), competing risk
(15), regression (5), classification (1), mixed outcomes (3), unsupervised (3). It
is recommended to experiment with different nodesize values.

nodedepth Maximum depth to which a tree should be grown. Parameter is ignored by
default.

splitrule Splitting rule (see below).

nsplit Non-negative integer specifying number of random splits for splitting a vari-
able. When zero, all split values are used (deterministic splitting), which can be
slower. By default 10 is used.

importance Method for computing variable importance (VIMP); see below. Default action is
importance="none" but VIMP can be recovered later using vimp or predict.

bootstrap Bootstrap protocol. Default is by.root which bootstraps the data by sampling
without replacement. If none, the data is not bootstrapped (it is not possible to
return OOB ensembles or prediction error in this case).

12 rforest

membership Should terminal node membership and inbag information be returned?

na.action Action taken if the data contains NA’s. Possible values are na.omit or na.impute.
The default na.omit removes the entire record if any entry is NA. Selecting
na.impute imputes the data (see below for details). Also see the function
impute for fast imputation.

nimpute Number of iterations of the missing data algorithm. Performance measures such
as out-of-bag (OOB) error rates are optimistic if nimpute is greater than 1.

perf.type Optional character value specifying metric used for predicted value, variable im-
portance (VIMP), and error rate. Reverts to the family default metric if not speci-
fied. Values allowed for univariate/multivariate classification are: perf.type="misclass"
(default), perf.type="brier" and perf.type="gmean".

xvar.wt Vector of non-negative weights (does not have to sum to 1) representing the
probability of selecting a variable for splitting. Default is uniform weights.

yvar.wt Used for sending in features with custom splitting. For expert use only.

split.wt Vector of non-negative weights used for multiplying the split statistic for a vari-
able. A large value encourages the node to split on a specific variable. Default
is uniform weights.

case.wt Vector of non-negative weights (does not have to sum to 1) for sampling cases.
Observations with larger weights will be selected with higher probability in the
bootstrap (or subsampled) samples. It is generally better to use real weights
rather than integers. See the breast data example below illustrating its use for
class imbalanced data.

forest Save key forest values? Used for prediction on new data and required by many
of the package functions. Turn this off if you are only interested in training a
forest.

var.used Return statistics on number of times a variable split? Default is FALSE. Possible
values are all.trees which returns total number of splits of each variable, and
by.tree which returns a matrix of number a splits for each variable for each
tree.

split.depth Records the minimal depth for each variable. Default is FALSE. Possible val-
ues are all.trees which returns a matrix of the average minimal depth for a
variable (columns) for a specific case (rows), and by.tree which returns a three-
dimensional array recording minimal depth for a specific case (first dimension)
for a variable (second dimension) for a specific tree (third dimension).

seed Negative integer specifying seed for the random number generator.

statistics Should split statistics be returned? Values can be parsed using stat.split.

... Further arguments passed to or from other methods.

Details

Splitting

1. Splitting rules are specified by the option splitrule.

2. For all families, pure random splitting can be invoked by setting splitrule="random".

rforest 13

3. For all families, computational speed can be increased using randomized splitting invoked by
the option nsplit. See Improving Computational Speed.

Available splitting rules

1. splitrule="gini" (default splitrule): Gini index splitting (Breiman et al. 1984, Chapter
4.3).

2. splitrule="auc": AUC (area under the ROC curve) splitting for both two-class and multi-
class setttings. AUC splitting is appropriate for imbalanced data. See imbalanced for more
information.

3. splitrule="entropy": entropy splitting (Breiman et al. 1984, Chapter 2.5, 4.3).

Value

An object of class (rfsrc, grow) with the following components:

call The original call to rfsrc for growing the random forest object.

family The family used in the analysis.

n Sample size of the data (depends upon NA’s, see na.action).

ntree Number of trees grown.

mtry Number of variables randomly selected for splitting at each node.

nodesize Minimum size of terminal nodes.

nodedepth Maximum depth allowed for a tree.

splitrule Splitting rule used.

nsplit Number of randomly selected split points.

yvar y-outcome values.

yvar.names A character vector of the y-outcome names.

xvar Data frame of x-variables.

xvar.names A character vector of the x-variable names.

xvar.wt Vector of non-negative weights for dimension reduction which specify the prob-
ability used to select a variable for splitting a node.

split.wt Vector of non-negative weights specifying multiplier by which the split statistic
for a covariate is adjusted.

cause.wt Vector of weights used for the composite competing risk splitting rule.

leaf.count Number of terminal nodes for each tree in the forest. Vector of length ntree. A
value of zero indicates a rejected tree (can occur when imputing missing data).
Values of one indicate tree stumps.

proximity Proximity matrix recording the frequency of pairs of data points occur within
the same terminal node.

forest If forest=TRUE, the forest object is returned. This object is used for prediction
with new test data sets and is required for other R-wrappers.

membership Matrix recording terminal node membership where each column records node
mebership for a case for a tree (rows).

14 rforest

splitrule Splitting rule used.

inbag Matrix recording inbag membership where each column contains the number of
times that a case appears in the bootstrap sample for a tree (rows).

var.used Count of the number of times a variable is used in growing the forest.

imputed.indv Vector of indices for cases with missing values.

imputed.data Data frame of the imputed data. The first column(s) are reserved for the y-
outcomes, after which the x-variables are listed.

split.depth Matrix (i,j) or array (i,j,k) recording the minimal depth for variable j for case i,
either averaged over the forest, or by tree k.

node.stats Split statistics returned when statistics=TRUE which can be parsed using
stat.split.

err.rate Tree cumulative OOB error rate.

importance Variable importance (VIMP) for each x-variable.

predicted In-bag predicted value.

predicted.oob OOB predicted value.

class In-bag predicted class labels.

class.oob OOB predicted class labels.

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
########### performance of Random Rank Forest
obj <- rforest(subtype~., data = tnbc[,c(1:10,337)])
obj

select.rules 15

select.rules Select Decision Rules to Achieve Higher Prediction Accuracy

Description

Select rules from a extrat.rules (rules) object

Usage

select.rules(object, data, data.pair = FALSE)

Arguments

object An extracted rule (rules) object generated from the extract.rules function.

data A validation dataset for selecting rules.

data.pair Is data already converted into binary ranked pairs from the pair function?

Value

rule Interpretable selected rules. Note that the performance score displayed is inac-
curate based on few samples from the original argument object.

rule.raw Rules directly extracted from trees for prediction purpose

data Data used to grow trees from the argument (object).

Author(s)

Ruijie Yin (Maintainer,<ruijieyin428@gmail.com>), Chen Ye and Min Lu

References

Lu M. Yin R. and Chen X.S. (2023). Ensemble Methods of Rank-Based Trees for Single Sample
Classification with Gene Expression Profiles.

Examples

data(tnbc)
obj <- rforest(subtype~., data = tnbc[1:100,c(1:5,337)])
objr <- extract.rules(obj)
predict(objr, tnbc[101:110,1:5])$label
objrs <- select.rules(objr,tnbc[110:130,c(1:5,337)])
predict(objrs, tnbc[101:110,1:5])$label

16 tnbc

tnbc Gene expression profiles in triple-negative breast cancer cell

Description

Gene expression profiles in triple-negative breast cancer cells with 215 observations and 337 vari-
ables. Gene expression values were randomly chosen from the original dataset. The outcome
variable is subtype.

Usage

data(tnbc)

Source

Chen, X., Li, J., Gray, W. H., Lehmann, B. D., Bauer, J. A., Shyr, Y., & Pietenpol, J. A. (2012).
TNBCtype: a subtyping tool for triple-negative breast cancer. Cancer informatics, 11, CIN-S9983.

Examples

data(tnbc)

Index

extract.rules, 2

gbm.more, 9
gbm.object, 9
gbm.perf, 10

importance, 3

pair, 4
predict, 5

ranktreeEnsemble, 7
rboost, 7
rforest, 10

save, 9
select.rules, 15

tnbc, 16

17

	extract.rules
	importance
	pair
	predict
	ranktreeEnsemble
	rboost
	rforest
	select.rules
	tnbc
	Index

